H-infinity loop-shaping is a design methodology in modern control theory. It combines the traditional intuition of classical control methods, such as Bode's sensitivity integral, with H-infinity optimization techniques to achieve controllers whose stability and performance properties hold despite bounded differences between the nominal plant assumed in design and the true plant encountered in practice. Essentially, the control system designer describes the desired responsiveness and noise-suppression properties by weighting the plant transfer function in the frequency domain; the resulting 'loop-shape' is then 'robustified' through optimization. Robustification usually has little effect at high and low frequencies, but the response around unity-gain crossover is adjusted to maximize the system's stability margins. H-infinity loop-shaping can be applied to multiple-input multiple-output (MIMO) systems.